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Abstract—The National Aeronautics and Space Administration
has developed a capacity approaching modulation and coding
scheme that comprises a serial concatenation of an inner accumu-
late pulse-position modulation (PPM) and an outer convolutional
code [or serially concatenated PPM (SCPPM)] for deep-space
optical communications. Decoding of this code uses the turbo
principle. However, due to the nonbinary property of SCPPM,
a straightforward application of classical turbo decoding is very
inefficient. Here, we present various optimizations applicable in
hardware implementation of the SCPPM decoder. More specifi-
cally, we feature a Super Gamma computation to efficiently handle
parallel trellis edges, a pipeline-friendly “maxstar top-2” circuit
that reduces the max-only approximation penalty, a low-latency
cyclic redundancy check circuit for window-based decoders, and
a high-speed algorithmic polynomial interleaver that leads to
memory savings. Using the featured optimizations, we implement
a 6.72 megabits-per-second (Mbps) SCPPM decoder on a single
field-programmable gate array (FPGA). Compared to the current
data rate of 256 kilobits per second from Mars, the SCPPM coded
scheme represents a throughput increase of more than twenty-six
fold. Extension to a 50-Mbps decoder on a board with multiple
FPGAs follows naturally. We show through hardware simulations
that the SCPPM coded system can operate within 1 dB of the
Shannon capacity at nominal operating conditions.

Index Terms—Cyclic redundancy check (CRC), field-pro-
grammable gate array (FPGA) implementation, optical commu-
nications, quadratic polynomial interleaver, turbo decoding.

I. INTRODUCTION

ALL of National Aeronautics and Space Administration
(NASA)’s current deep-space missions communicate to

Earth using the radio frequency (RF) spectrum. However the
RF spectrum contains much congestion and is susceptible to
high diffraction loss due to the spreading of their beam widths.
For example, if we use a transmit antenna that is 3.7 meters in
diameter (such as one that is mounted on Voyager) and a fre-
quency in X-band to communicate between Earth and Saturn,
this transmission beam will spread out to an area over 1000
Earth-diameters wide due to diffraction. We can contrast this
result with a system that employs optical communications. If we
use a small 10-cm optical telescope with wavelength of 1 m
to communicate data between the same Earth-Saturn distance
instead, the resulting spot size will only be one Earth-diameter
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wide. This represents a factor of 1000 concentration of received
energy in both horizontal and vertical directions (a factor of
in power intensity). This improved energy delivery efficiency
allows an optical link to operate at a lower transmit power and
aperture size while still achieving a higher link data rate. For
all of these reasons and more, NASA plans to utilize higher
frequency regions in the electromagnetic spectrum to increase
the deep-space information throughput from 256 kilobits per
second (kbps) (Mars Exploration Rovers) to tens of megabits
per second and beyond.

Modulation and coding are keys to reliable communications.
In the case of an optical link with direct detection for which we
consider, a modulation that delivers a high peak-to-average ratio
has been shown to be very efficient [1]. Pulse-position mod-
ulation (PPM) is one scheme that offers high peak-to-average
power ratio. An th-order PPM divides a symbol interval into

possible pulse locations and only a signal pulse is placed into
one of these possible positions depending on the information to
be transmitted.

Moision and Hamkins compared various concatenated mod-
ulation coding schemes with PPM that included Reed–Solomon
PPM (RS-PPM), low-density-parity-check PPM (LDPC-PPM),
and convolutional coded PPM. They discovered that a serially
concatenated PPM (SCPPM) scheme offers the best perfor-
mance and complexity tradeoff for deep-space communications
[2].

Modulation is a mapping of bits to symbols transmitted on the
channel. This mapping may be considered a code and demodu-
lation as decoding of the code. Conventionally, the modulation
and error-correcting code (ECC) are decoded independently,
with the demodulator sending its results to the ECC decoder.
However, we may consider the combination of the modulation
and the ECC as a single large code, which maps user information
bits directly to the symbols transmitted on the channel. We could
gain several decibels in performance by decoding the ECC and
modulation jointly as a single code relative to decoding them in-
dependently. An exact maximum-likelihood (ML) decoding of
the joint modulation—ECC code would, in most cases of prac-
tical interest, be prohibitively complex. However, we may ap-
proximate true ML decoding while limiting the decoder com-
plexity by iteratively decoding the modulation and the ECC.
This is in fact the “turbo” principle and more details can be
found in [3].

Due to the unique structure of SCPPM, a straightforward ap-
plication of the standard turbo decoding algorithm would be
very inefficient. Existing works on turbo optimization, for ex-
ample that of [4], offer insights but cannot be directly applied to
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the SCPPM design. Other codes, especially ones designed for
the optical channel, that have similar constructions might face
the same challenges in their decoding complexity and will ben-
efit from optimizations presented in this work.

This paper is organized as follows. In Section II, we give our
channel assumptions. In Section III we describe the SCPPM
code construction and explain why application of classical turbo
decoding is not practical. In Section IV, we describe the turbo-
like part of the SCPPM decoding.

However, our decoder includes many new techniques that op-
timize the decoding speed and performance. In Section V we
illustrate how to efficiently decode the inner accumulate PPM
(APPM) code in SCPPM.

In Section VI we present a hybrid “maxstar top-2” circuit fit
for pipelining and achieves a better performance than the max-
only approximation with only a small amount additional logic.

In Section VII, we describe the SCPPM interleaver design.
The interleaver, characterized by a permutation polynomial,
produces a good decoder threshold and a low decoder error
floor. The interleaver also has an algorithmic realization that
does not require storing the interleaving and deinterleaving
mappings, thereby saving memory.

To increase the overall throughput, the SCPPM code trellis
can be partitioned into windows and parallel decoders can be
applied to the windows. In Section VIII, we provide a low-la-
tency cyclic redundancy check (CRC) circuit that works with
window-based decoders.

In Section IX we present various field-programmable gate
array (FPGA) implementations of the SCPPM decoder that in-
clude the featured optimizations and show that SCPPM can op-
erate within one dB of capacity in a nominal deep-space mis-
sion scenario. We demonstrate that a 6.72 Mbps decoder can
be realized on a single FPGA. In addition, we outline a readily
achievable path to implementing a SCPPM decoder that can
deliver 50 Mbps (enough to transfer compressed high-defini-
tion television signals) and beyond for deep-space or satellite
communications.

II. CHANNEL ASSUMPTIONS

We consider an optical communications system that uses di-
rect photon detection with a high-order PPM [5, ch. 1.2]. An

th-order PPM modulation uses a time interval that is divided
into possible pulse locations, but only a single pulse is placed
into one of the possible positions. The position of the pulse is
determined by the information to be transmitted. A diagram of
the optical communications system in discussion is shown in
Fig. 1. The information bits are inde-
pendent identically distributed (i.i.d.) binary random variables
assumed to take on the values 0 and 1 with equal probability.
The vector is encoded to , a vector of
PPM symbols. The overall length in bits for a codeword block
is .

At the receiver, light is focused on a detector that responds
to individual photons as illustrated in Fig. 2. For each photon
sensed, the detector produces a band-limited waveform for
input to the demodulator. This waveform is used to estimate the
photon count, , within each slot . On the Poisson channel, a
nonsignaling slot has average photon count and a signaling

Fig. 1. Optical communications system.

slot has average count so that the likelihood ratio of
slot is calculated by

(1)

More on the receiver design can be found in [6].

III. SCPPM CODE

The SCPPM encoder, shown in Fig. 3, consists of an outer
rate 1/2 constraint length 3 convolutional code, a polynomial in-
terleaver, and an inner accumulate PPM (APPM) code. A block
of information bits is CRC protected and encoded by the
outer convolutional code to yield a length coded sequence

. This coded sequence is permuted bit-wise to produce the se-
quence that is then filtered by an accumulator and mapped
to PPM symbols . There are bits
per PPM symbol. Due to the APPM bits-to-symbol mapping,
the trellis that describes the inner code consists of 2 states and

parallel branches between connecting states. We cannot
directly apply standard turbo decoding and treat each of the par-
allel edges separately because doing so would make pipelining
difficult and increase decoding latency.

The interleaver and deinterleaver are described by quadratic
polynomials and efficient designs are given in Section VII.

IV. SCPPM DECODING

Decoding of the SCPPM code uses the turbo principle. The
decoding procedure also incorporates new techniques and com-
ponents that are not found in the standard turbo approach to op-
timize hardware implementation. For completeness, we discuss
the conventional turbo techniques that are adopted by SCPPM
decoding in this section.

However, efficient SCPPM decoding requires an inner PPM
decoder that handles parallel edges in the code trellis, a high-
speed algorithmic interleaver (de-interleaver) that works with
PPM symbols, and a multiple-bit input CRC circuit that works
with a windowed decoder. We could not find in existing litera-
ture techniques that deal with these topics directly and therefore,
we will present our customized approach to each of these sub-
jects in Sections V through VIII.

A high level block diagram of the SCPPM decoder is illus-
trated in Fig. 4. The symbol indicates input to the constituent
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Fig. 2. From PPM symbols to LLRs.

Fig. 3. SCPPM encoder.

Fig. 4. SCPPM decoder. Output bits can be directed to CRC to validate
codewords.

decoders and indicates output. The inner decoder operates on
the modulation code and the outer decoder operates on the con-
volutional code. Each code is described by a trellis. For each
trellis, the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [7] is
used to compute the a posteriori log-likelihood ratios (LLRs)
from a priori LLRs by traversing the trellis in forward and back-
ward directions. Extrinsic information (the difference between
the a posteriori and a priori LLRs) is exchanged in iteration
rather than the a-posteriori LLRs to reduce undesired feedback.

A. Log-Domain Decoding

Each decoder module in the SCPPM decoder applies the
BCJR algorithm to the trellis of the constituent code. We use
standard notations in the turbo decoding literature [8] and
simply restate the calculation of the branch and state metrics

Fig. 5. One stage of a trellis.

inside the inner decoder module. To facilitate hardware real-
ization, the metric computations are done in the log domain
[9], which translates multiplications into additions, and is less
sensitive to round-off errors in fixed-point arithmetic.

Let be the set of states and be the set of directed labeled
edges in a trellis. Each edge has an initial state and
a terminal state (see Fig. 5). For each edge and stage of
the inner code trellis, the BCJR algorithm traverses the trellis in
the backward direction to calculate the log branch metric as

(2)

The term is the PPM symbol LLR provided by the
channel given in (1) and the term is the a priori symbol
LLR provided by the outer decoder. In the same trellis pass, the
BCJR algorithm calculates a backward state log metric for each
state and stage as

(3)

The algorithm then traverses the trellis in the forward direction
to calculate the ’s in the same way. The output LLRs are a
function of ’s, ’s, and ’s. The outer decoder operates on the
trellis that describes the outer code using the same principle.
This approach is also known as log maximum a-posteriori (log-
MAP) decoding [10].
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Fig. 6. Single stage of the inner APPM code trellis with M=2 parallel edges
between connecting states.

The log sum of exponentials of (3) can be expressed as the
max of the exponents plus an adjustment term. This operation
is known as the maxstar function

(4)
The adjustment term can be precomputed and stored in a
look-up table (LUT) to reduce complexity at an increase in
memory usage [11]. We can also ignore the adjustment term
entirely to save on memory—this approach is known as max
log-MAP decoding. Some of the loss incurred from this approx-
imation can be recovered by scaling the extrinsic information
that is passed between the inner and outer decoder [12], [13].
We will introduce a new technique that recovers even more of
the loss by adding only a small amount of logic in Section VI.

B. Simplifying Computations With Parallel Trellis Edges

The inner APPM code trellis has 2-states and edges per
stage as seen in Fig. 6. The forward and backward recursions on
this trellis require taking the of edges per transition
between two states. Suppose each 2-input operation incurs
a delay of one clock cycle. A direct implementation of the for-
ward-backward algorithm would require a delay of
cycles per transition between two states just for the ’s. Bar-
soum and Moision [2], [14] showed that the computation can be
pipelined, reducing the -input operation to a 2-input

operation that is computed in one clock cycle.
Handling of parallel edge transitions in a trellis is not a new

notion. However, we are not aware of any existing literature on
this topic that would apply directly to our SCPPM code struc-
ture. Therefore, in Section V we illustrate how to efficiently deal
with the APPM inner code trellis.

C. Fast Modulo Normalization

The BCJR algorithm consists of traversing the code trellis and
updating a set of state and branch metrics. Due to the recur-
sive nature of the updates, each of the state metrics in a stage is
normalized and clipped by subtracting out the maximum state

metric of that stage. Because this update path involves recur-
sion, it cannot be pipelined and becomes the critical path that
limits the maximum clock rate at which our design can run on
the FPGA. Without normalization, the state metrics can grow
unbounded and eventually overflow in a fixed-point hardware
implementation. It has been shown for the Viterbi algorithm
[15] that as long as the quantization bit width is sufficient to ac-
count for the maximum differences between the states metrics,
the metrics updates can be allowed to overflow without affecting
the result of the computations. This approach naturally extends
to the BCJR algorithm and is applied to the SCPPM decoder
[11], [16].

D. Partial Statistics

To reduce the channel likelihood storage requirements, we
may discard the majority of the channel likelihoods and use par-
tial statistics [17]. This may be accomplished by processing only
a subset consisting of the largest likelihoods during each symbol
duration--the likelihoods corresponding to the PPM slots with
the largest number of observed photons. The observation of the
remaining slots is set to the mean of a noise slot. In low back-
ground noise, a small subset may be chosen with negligible loss.

E. Window Approach to the Outer Decoder

We can partition a code trellis into distinct segments and de-
code these segments in parallel, therefore increasing the overall
throughput.

In iterative decoding, a CRC is often used as a stopping rule.
While the concept of windowing is not new [18], however, we
have not seen in literature a description of an efficient CRC cir-
cuit that works with window-based turbo decoders. A conven-
tional CRC is implemented as a linear-feedback shift register
(LFSR) circuit and takes bit-by-bit input serially. In case of
windowing, the decoder outputs multiple bits per clock cycle,
many stages apart, and these bits must be buffered into a re-
ceived word before input into a serial CRC circuit. To remove
the serial-input bottleneck and avoid a buffering delay, we pro-
vide in Section VIII a CRC circuit that can take as input multiple
bits per clock cycle generated by windowing.

The inner SCPPM trellis consists of symbols
or segments. The codeword length is selected to be 15120
bits and a practical PPM order is 64. For this setting, the
inner trellis will have 2520 segments. The outer trellis is a rate
1/2 code and therefore has or 7560 segments. We can par-
tition the outer code by three and apply window-based BCJR
to all three segments in parallel to obtain an overall increase in
throughput by a factor of two as seen in Fig. 7.

V. SIMPLIFYING COMPUTATIONS IN

INNER APPM DECODER

We work with the recursion. The computation follow in
the same manner. In the product domain, it is straightforward to
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Fig. 7. Windowing increases throughput. For N = 15120 and 64 PPM, outer trellis is three times as long as the inner trellis.

see an application of the distributive law (multiplication distri-
bution over addition) saves computations on a trellis with par-
allel edges

(5)

where , a sum over parallel edges, is referred to as the
Super Gamma for the state pair at stage . The same
calculation can be made for the state pair .

We have an analogous simplification in the log domain via
the distributive law (addition distributive over ) which can
be seen by taking logarithms of both sides of (5)

(6)

where

(7)

Since the s are not a function of a recursively computed
quantity, they may be pre-computed via a pipeline as illustrated
in Fig. 8. The schedule for the Super calculations is shown in
Fig. 9. The pipeline is filled with the first stages of ’s.
The decoding BCJR algorithm then starts after the pipeline is
filled and thereafter, a set of Super values per trellis stage is
generated per clock. More on this topic can be found in [2].

Fig. 8. Pipelined max to compute the Super 
’s.

VI. MAXSTAR ONLY THE TOP-2 ELEMENTS

Implementing the full log-MAP decoder consumes much
FPGA resources because each maxstar operation requires a
LUT. For SCPPM, the number of tables required is increased
by the potentially high number of parallel edges in the APPM
code trellis. To reduce the FPGA resource utilization, we can
ignore the adjustment term in the maxstar function and simply
use the max operation. However, this simplification, called
max log-MAP decoding, comes with a significant decoder
performance loss. Wu and Pisuk [12] showed that a confidence
factor, which we denote as FF , can be used
to weight the extrinsic LLRs that are passed between two
iterative decoders to recover some of the loss incurred from the
max log-MAP approach. To recover yet more of the loss, we
consider a hybrid approach that takes the maxstar of the top-2
elements in the input array to further reduce the gap between
log-MAP and max log-MAP decoding.

A. The Algorithm

Given an array of elements , one
method of finding the maxstar of the top-2 elements consists
of sorting the array. To do this, one can simply assign two vari-
ables and to and , then compare the rest of the
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Fig. 9. Scheduling for the Super 
 calculations. A stage in the figure represents a stage of 
’s in the trellis.

elements in with first and then . If the compared ele-
ment is greater than , we replace with and with
the element. If the compared element is greater than only,
we replace with the element. This procedure is of com-
plexity and at its completion the two variables will con-
tain the top-2 elements of and we perform a
to obtain the desired result. This method would not be efficient
to realize in hardware as it requires a state machine, takes
clocks for each array, and cannot be pipelined. We thus develop a
“maxstar top-2” algorithm that can be implemented recursively
and does not require significant additional circuitry relative to
simply taking the max.

The idea is to build from the “max only” pipeline that finds
the top element in . The base case reduces to taking the max of
two elements, and , where both . Instead
of propagating only the max of the two elements after each com-
pare, we also feed forward their difference . In
this way, at every stage of the pipeline, we would then be able
to maintain not only the current maximum element but also its
difference with the next largest element compared so far in the
pipe.

Our “maxstar top-2” algorithm takes in 4 inputs and produces
two outputs. The inputs are two elements to be compared,
and and the difference between each and their next largest
element in the previous stage and .

B. The Circuit

The circuit for the two element “maxstar top 2” is given in
Fig. 10. The two inputs are denoted here as and . Without
loss of generality, assume . We only need to consider
two cases to see how the circuit works. The output of the top
multiplexer (MUX) will be and the lower MUX will select .

Case 1: : We state that is the difference
between and its previous compare, denoted here as . Sub-
stituting for we have and we can
strip the absolute values because is the largest of the three
so and . The element is closer to
and we output in the final MUX.

Case 2: : We have here .
Stripping the absolute values and rearranging the terms we get

. The element is closer to than and we output
in the final MUX.

Fig. 10. Maxstar top-2 circuit.

We can inductively see that in the base case with a 2 element
input, the “maxstar top-2” circuit outputs the maximum element
and the difference between the maximum and the next largest el-
ement in previous compares. We can simply replace the maxstar
circuit in the pipeline of Fig. 8 with “maxstar top 2” to find the
largest element and the difference between the largest and the
second largest in all stages before the last. And we use a maxstar
circuit in the last stage to calculate the maxstar of the top-2 ele-
ments in an array as illustrated in Fig. 11. This approach can be
extended to the maxstar of the top-4 elements, and so on. The
performance of “maxstar top 2” is benchmarked in Section IX.

VII. ALGORITHMIC POLYNOMIAL INTERLEAVER

The interleaver design can affect the decoder threshold and
error floor. Choosing a random interleaver permutation will gen-
erally lead to a desirable threshold and the key to interleaver
design becomes finding a permutation that will also lead to a
low error floor. The SCPPM interleaver is characterized by a
second-order polynomial . We use choice se-
lections of the parameters and to generate a permutation
polynomial that not only exhibits a low error floor but also pos-
sesses a simple hardware implementation [19]. Comparison of
the SCPPM polynomial interleaver versus the -random inter-
leaver [20] is given in Section IX-E.
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Fig. 11. Maxstar top-2 pipeline.

The interleaver input bit position is mapped to
output bit position , i.e.,

We show that mapping for the th interleaver position can
be expressed as a function of the current interleaver position

(8)

where

(9)

and is the “mod ” operation.
In our design, we assign . Candidate

interleavers for this are of the form
[19], [21], where is a positive integer and does not have
2,3,5 or 7 as a factor. Among this class we have observed good
performance with the polynomial . An
inverse polynomial is calculated in [2] and given as

. We use the inverse polynomial to implement
the deinterleaver.

A. Interleaver Partitioning for One Clock Read/Write Access

For an th-order PPM modulation, the inner decoder
processes a PPM symbol (or bit LLRs) per trellis
stage. A straightforward scheduling would be to read one LLR
from the interleaver memory per clock. This approach incurs
a long latency because the inner decoder would have to wait

clocks before proceeding to the next stage. To make
interleaving more efficient, we design an approach that allows
one clock read/write access. This approach also applies to the
deinterleaver.

We illustrate our idea using the SCPPM decoder
with . The interleaver memory is partitioned into

memory modules. This implementation can be
easily adapted for codes with other PPM orders and parameters.

Fig. 12. Interleaver implementation. Permuted addresses can be obtained from
a LUT or computed on-the-fly.

Each module is implemented using Xilinx dual-ported
block random access memory (BRAM) as shown in Fig. 12.
The input position into the inner decoder is determined
from the output position of the outer decoder, that is

. At each clock, the outer decoder
produces two LLRs and these are written in permuted order
into the BRAMs simultaneously. The address permutation
to memory location mapping for the interleaver is given in
Table I. The first column consists of the output position
of the outer decoder in sequential order. The second column
consists of the corresponding input position into the inner
decoder. The third column and fourth column are the memory
module index and address in which the
corresponding outer decoder output position is stored. The fifth
column indicates the trellis stage and the sixth column marks
the BCJR window number (for the window-based SCPPM
decoder). For example, the 221st LLR, starting from zero,
produced by the outer decoder corresponds to the first LLR
input for the inner decoder. This LLR is stored in address zero
of memory module one. This LLR is calculated at the 110th
outer code trellis stage (0–7559) and belongs to the zeroth
window segment (out of three).

The outer decoder writes to the interleaver BRAMs in per-
muted order using the mapping of Table I. As we march down
the table entries, we see that there will be no write conflicts at
any time because the period of memory module writes is six
and only two LLRs are produced by the outer decoder each
clock. During interleaver reads, the inner decoder accesses the
BRAM entries in sequential order. That is, at the first clock,
the inner decoder reads the first entry (address 0) of each of the
six memory modules and increases the address pointers by one.
The six LLRs read correspond to through and are
highlighted by bold face fonts in Table I. At the next clock,
the inner decoder reads the second entry (address 1) of each
memory module and again updates the address pointer. These
six LLRs read correspond to through and so on.
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TABLE I
ADDRESS PERMUTATION TABLE FOR THE INTERLEAVER (TOP HEADER) AND

DEINTERLEAVER (BOTTOM HEADER)

Fig. 13. Deinterleaver implementation. Permuted addresses can be obtained
from a LUT or computed on-the-fly.

The deinterleaver is implemented as one big chunk of
memory as illustrated in Fig. 13. The output LLRs generated
by the inner decoder is written sequentially six at a time into
“one row” of the dual-ported BRAM. The outer decoder then
reads the LLRs in permuted order two at a time from the dein-
terleaver. The address permutation table for the deinterleaver
is the same as that of the interleaver given in Table I, with the
exception that the header corresponds to that of the second
row. For example, , the 862nd LLR (starting from
zero) input to the outer decoder should be read from the second
column zeroth row of the deinterleaver BRAM. The control
logic reads the desired two rows and then selects the correct
entry out of each row. One can see from the table that there are
no read conflicts.

With the above interleaver and deinterleaver design, the LLRs
produced or required by a stage of trellis decoding can be written
to or read from memory in one clock cycle.

B. Removing the Need to Store Interleaver Mappings

We can avoid the need to store Table I in memory by com-
puting the memory module and address for a specific inter-
leaved position on-the-fly. The interleaver is partitioned into

distinct memory blocks each with
entries for fast read and write access. Each interleaver position

, for , is mapped to a corresponding
index pair where is the index into
one of the memory modules and is the
index into one of the address entries in each module. Each
stage of the inner APPM decoding produces LLRs. Because
the modulo and division operations are costly to implement in
hardware, we describe a procedure that calculates the interleaver
indexing pair for the set of LLRs desired by the current stage
based on the set of indexing pairs computed in the previous
stage. We begin with a proposition.

Proposition 1: If , then is equivalent to
.

Proof: A nonnegative number modulo can be obtained
by continuously subtracting from until becomes less than

. If , the number modulo can be obtained by sub-
tracting multiples of from . Therefore,
is equivalent to .

1) Step 1: Initialization: We assign the constant
and set the initial modulus values using (8) an (9) to

(10)

(11)

as well as the initial quotient values

(12)

(13)

2) Step 2: Loop for and
Note that each update is implemented by an individual cir-

cuit. Therefore, we have circuits working in parallel, each
calculating the interleaver indexing pair for each of the LLRs
needed by decoding of the inner code. First, we expand

(14)

and define . Using this definition, (8), and (14)
together, we update the modulus as

(15)

because for all stages

(16)
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We express the functions

(17)

and

(18)

We follow by updating the quotient for as

(19)

because from (15) and from (16) . We can then
update the quotient for as

(20)

The memory module for the interleaver position
is then and the address entry is .

C. Circuit Description for the Algorithmic Interleaver

The derivations of (15) and (16) indicate that the memory
module index for each LLR and each stage stays the same
throughout the trellis. Plugging in parameters to the initial
values of (10) will show that the memory module indexes per
trellis stage has a period . This observation is confirmed by
Table I. In the table, the memory module indexes take on the
values for every stage and this pattern
repeats for all stages. Consequently, we only need to calculate
the address entry for each LLR in each stage. A circuit that
implements (19) and (20) to compute the address entry per LLR
per trellis stage is given in Fig. 14. Note that there will be
such circuits one for each LLR per stage working in parallel.

This algorithmic interleaver removes the need to store Table I.
Implementation only requires a small number of gates. This
memory saving benefit is even more evident in multiple decoder
instantiations on one FPGA because many copies of the same
Table need not be stored. We characterize logic and memory
tradeoff number for our SCPPM decoder in Section IX-A.

VIII. LOW-LATENCY CRC

A straightforward hardware implementation of a CRC is an
LFSR. A block of information bits with the associated CRC
check bits are shifted into the LFSR circuit one bit at a time.
After the entire block is input to the circuit, the state of the reg-
isters indicates whether the CRC is verified. A CRC can be used

Fig. 14. Circuit that computes the address into the memory module for the ith
LLR in each stage, where i = [0; � � � ; C�1]. There will be C instances of this
circuit one for each LLR.

together with iterative turbo decoding to flag codeword errors or
to stop decoding iterations.

To increase the throughput of turbo decoding, the code trellis
can be partitioned into distinct windows and multiple decoders
can be applied to these windowed trellis segments in parallel.
Doing so will generate multiple decoded bits per clock and these
bits must be buffered into a received word before running the
serial CRC circuit. To avoid this buffering delay, we propose a
low-latency CRC circuit that can handle multiple-bit inputs per
clock.

A. Polynomial Description of CRCs

Let us write a length binary message block
, that is to be protected by a CRC,

in polynomial form

(21)

Let the length CRC protected codeword be
or

(22)

and the CRC generator be

(23)

The CRC polynomial is calculated by first shifting the mes-
sage polynomial left by positions and then by taking the
modulo operation

(24)
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Fig. 15. Circuit for multiplying by h(x) and dividing by g(x).

where . The codeword block can also be
written as

(25)

( is the binary XOR operations) or

(26)

To verify the CRC of a codeword block
that may be corrupted by an error polynomial , we calculate

(27)

Therefore, if the remainder is zero, the CRC passes and the error
polynomial is zero. If the remainder is nonzero, then the code-
word is corrupted. Note that we won’t be able to construct the
error polynomial from the CRC remainder .

B. Hardware Description of CRC Checks

A CRC is simply a modulo operation and can be implemented
by an LFSR for dividing polynomials. The circuit for multi-
plying by a polynomial and dividing by a polynomial ,
each with degree up to , is given in Fig. 15. For division only,
simply set ( , every other coefficients to 0).
After the entire codeword is shifted into the circuit, the quotient
of the division operation is given by the bits that are shifted out
and the remainder is given by the register state. More informa-
tion on LFSRs can be found in [22, Linear Switching Circuits].

C. CRC Circuit for Windowed-Based Turbo Decoding

In windowed-based turbo decoding, the output bit streams to
be fed into the CRC are generated in parallel as seen in Fig. 16.
We describe how a CRC circuit can be modified to handle this

Fig. 16. Trellis windowed by three leads to three simultaneous decoded bit
streams.

parallelism. Let the code trellis be partitioned into distinct
windows. The codeword polynomial can be written as

(28)

We can then write the check polynomial as

(29)

where , , and each
can be pre-calculated. The CRC LFSR circuit for the window-
based decoder will consist of both feed-forward and feedback
tap connections. The feed-forward taps are given by the XOR of

’s and the feedback taps are given by the generator .

D. CRC Circuit for the Window-Based SCPPM Decoder

A practical realization of the SCPPM code scheme is to use
PPM order 64. The SCPPM decoder in our implementation
is windowed by three, as detailed in Section IV-E, to double
the overall throughput. With the outer code trellis having 7560
stages, each windowed by three segment has 2520 stages. We
use a 22-bit CRC with generator
to check the output of the windowed SCPPM decoder. The
CRC indicates whether a correct codeword decision is reached
and can be used to stop the iteration process. Using techniques
presented in this section, we precompute the polynomials

and and generate
three circuits (shown in Fig. 17) to check the output bit stream
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Fig. 17. CRC circuits for the polynomial g(x) = x + x + x + x + 1 and the SCPPM windowed by three decoder.

of each window. We can optimize and consolidate the three cir-
cuits into one by XORing the three output bit streams according
to the feed-forward taps before input to the CRC circuit.

IX. DECODER RESULTS

The SCPPM decoder for PPM order is currently im-
plemented on a Xilinx Virtex II-8000 FPGA part, speed grade 4
(XC2V8000-4), which sits on a Nallatech BenDATA-WS board.
The memory requirement is reduced by taking only the top-8
channel LLRs as decoder input. The channel LLRs input to the
decoder are quantized to 8 bits, 5 for dynamic range, and 3 for
precision.

We have implemented three versions of the decoder. The first
is the log-MAP decoder with normalization and clipping circuits
for the state metrics. The backward recursion state metrics ’s
are clipped to 8 bits before being stored into RAMs. The for-
ward recursion state metrics ’s are calculated as needed and
not stored. The remaining variables in the data path are allowed
to grow and not stored.

The second is the max log-MAP decoder with modulo nor-
malization. The ’s are allowed to grow in dynamic range up to
16-bits (plus a 3-bit precision for a total of 19-bits) before being
stored into RAMs. Again, the ’s are calculated as needed and
not stored. All other metrics are allowed to grow in width and
not stored.

The third is the window-based max log-MAP decoder. The
outer code trellis is partitioned into three.

We only had the opportunity to complete place and route for a
fourth variation of the decoder, the “maxstar top 2” implemen-
tation, and did not get a chance to finish the wrapper around
the decoder. But we did produce a bit-exact software of the

TABLE II
COMPARING DIFFERENT SCPPM DECODER IMPLEMENTATIONS ON THE

VIRTEX-II 8000 FPGA. THIS FPGA HAS A TOTAL OF

46592 LOGIC SLICES AND 168 BRAM BLOCKS

“maxstar top 2” decoder and used it to generate accurate simu-
lation results.

A. Resource Utilization

The FPGA utilization report for all decoder implementa-
tions is given in Table II. Each decoder implementation has
two rows of utilization numbers in percentages. The first row
reports the slices (or logic) utilization. The second row reports
the BRAM utilization. Each utilization is then further broken
down into inner (decoder), outer (decoder), and miscellaneous
components. The sum of the components equals to the total.
Only percentages are given and the actual number of logic
slices and BRAM blocks can be computed from the Xilinx
Virtex II-8000 specification. For this part, the FPGA has 46592
logic slices and 168 BRAM blocks. Miscellaneous blocks are
modules external to the decoder that consume resources such
as circuitries and buffers for the FPGA interface. The channel
symbol memory and state metric storage are all implemented
using Xilinx internal dual-ported block RAMs (BRAMs) for
all decoders.
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TABLE III
MAXIMUM CLOCK RATE AND THROUGHPUT FOR THE DIFFERENT SCPPM DECODER DESIGNS ON THE XILINX VIRTEX-II 8000 FGA

The LUTs for the log-MAP decoder are realized as
simple multiplexers with hard coded inputs that function like
read-only memories (ROMs). The log-MAP decoder also
allocated logic to normalization and clipping. We can tradeoff
resource and performance by removing the LUTs and the
clipping circuits. The max log-MAP decoder avoids LUTs and
uses modulo normalization to reduce the logic utilization from
64% to 42% at a performance cost of 0.2 dB. Moreover, we can
compromise between resource and performance by using the
hybrid maxstar top-2 log-MAP decoder. The logic utilization
for this approach is 54%, just half way between the 64% of
log-MAP and 42% of max log-MAP. The performance cost is
also half way in between at 0.1 dB.

In the log-MAP decoder we store the interleaver mappings
of Table I as LUTs on BRAMs. For the max log-MAP version,
we avoid storing the interleaver mapping in BRAM and use the
algorithmic approach. This allows us to compare the memory
savings in going to an algorithmic interleaver. The synthesis tool
reports a savings of 453 Kb in BRAM memory which is 15% of
the 3.02 Mb total on the Virtex-II 8000. The cost in logic to
implement the algorithmic interleaver is reported as only 40 out
of 46592 slices.

We also provide the report for window-based max log-MAP
decoder. As expected, windowing the inner code trellis by three
and operating three parallel outer decoder increases the outer
decoder logic percentage from 5% to 15%. However, this im-
plementation increases the throughput by a factor of two. The
maximum clock rate and throughput based on 7 average itera-
tions for all decoder designs are given in Table III.

B. Error Rate Performance

The decoder performance is shown in Fig. 18. The frame loss
rate (FLR) is plotted versus the average signal photons per
pulse slot in decibels. Each frame is a codeword of
information bits. A frame loss is declared when the decoder de-
cision could not converge to the correct codeword in the max-
imum number of allowed iterations which is set at 32. Out of the
7560 bits, 2 bits are used to terminate the trellis and 22 bits are
used for CRC. The CRC polynomial is
and has an undetected word error probability of approximately

assuming 7 average iterations. To re-
duce the overall undetected word error rate, the decoder runs a
minimum number of iterations first before validating the CRC.
In doing so, the undetected word error probability is lowered to
roughly the product of the frame loss rate and , a
very small value.

We make the following observations in the performance plot.
Fixed-point implementation (circle-line) has a 0.1-dB loss com-
pared to the floating-point decoder (dashed-line). Clipping and
and normalization of the state metrics led to a floor at . Max
log-MAP decoder (square-line) has a 0.6-dB loss compared to
log-MAP decoding (circle-line). Max log-MAP decoder with a

Fig. 18. SCPPM decoder performance on the Poisson channel under a nominal
deep-space mission scenario.

scaling of the extrinsic information by 0.5 (diamond-line) re-
covers 0.4 dB out of the 0.6 dB lost. Note that only the extrinsic
information at the output of the inner decoder is scaled by a
factor between 0 and 1. The extrinsic information at the output
of the outer decoder is untouched. The clipping and normaliza-
tion floor is lowered by using modulo arithmetic.

Also notice that using the “maxstar top 2” (triangle-line) cir-
cuit in the inner decoder, the log-MAP outer decoder, and a
scaling of inner decoder extrinsic information by 0.625, we are
able to recover another 0.075 dB in signal energy. A 0.5 scale
factor can be implemented in hardware by simply a right shift
by 1. A scaling of 0.625 is the sum of a right shift by 1 and right
shift by 3.

C. End-to-End Demonstration

We have successfully demonstrated [23] an end-to-end
SCPPM optical communications system as shown in Fig. 19.
We are able to deliver quality MPEG-2 video from a camera to
a display using this setup. The transmitter employs a 1064-nm
wavelength (Nd: YAG) solid state laser to modulate a stream of
SCPPM encoded symbols. The PPM pulses are then sent over
a fiber optic channel. At the receiving end, a hybrid photo-mul-
tiplier tube (HPMT) photon counting detector is used and the
receiver assembly converts the photon counts into LLRs for
our FPGA decoder. The results of the experimental runs at
various operating points are plotted in Fig. 20. There are two
experimental runs, one at 4 Mbps and the other at 6 Mbps both
use only the top-8 statistics and a maximum of 7 iterations.
These two curves are compared to a curve generated by using
a software simulated Poisson channel and the stand-alone
FPGA decoder. We see that the experimental curves match
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Fig. 19. End-to-end SCPPM optical link demonstration.

Fig. 20. End-to-end system performance. A frame is equivalent to a codeword
of 7560 information bits.

very closely to the stand-alone FPGA result. The end-to-end
performs within 1.5 dB of channel capacity. At a frame loss
rate of the number of signal photons per pulse slot is 2.67
and this corresponds to information bits per
photon.

D. Performance Comparison versus RS-PPM Scheme

A legacy ECC used in many previous and current NASA mis-
sions is the Reed–Solomon code. In Fig. 21 we compare the
RS-PPM coded scheme versus the SCPPM coded scheme and
show that in a nominal mission scenario, SCPPM out performs
RS-PPM by 3 dB. The results are generated using software sim-
ulation. To match the code rates we use the SCPPM code param-
eters and the RS-PPM code parame-
ters (4085,2047). We choose 64 PPM as a reasonable order and
an average background count of 0.2 photons per slot.

E. Performance Comparison of Different Interleavers

The interleaver design affects the error rate performance and
error floor of SCPPM. Through simulation, we show that the

Fig. 21. Comparison of SCPPM versus RS-PPM under a nominal deep-space
mission scenario.

SCPPM algorithmic polynomial interleaver performs as well as
a -random interleaver and has no observable error floor. The
error rate curves are plotted in Fig. 22. We see that for both
the word error rate (WER) and bit error rate (BER) the two in-
terleavers produced almost identical decoder performance. For
deep-space missions, where minimum WER floor requirements
are generally that of , the two interleavers meet the speci-
fications.

F. Path to 50 Mbps and Beyond

We achieved a 6.72 Mbps decoder on a single Xilinx Virtex-II
FPGA. Currently, Xilinx has available the Virtex-II Pro FPGA
part that is manufactured with a smaller micron-process and fea-
tures more BRAMs. We have completed a place and route of
our fastest design on the Virtex-II Pro. Results indicate that the
SCPPM decoder can deliver 8 Mbps at 7 average iterations. We
can add another stage of parallelism to our design so that the
inner decoder and outer decoder can work on two codewords
simultaneously and are not idle at any time. Doing so doubles
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Fig. 22. Comparison of the SCPPM polynomial interleaver versus the
�-random interleaver.

our throughput to 16 Mbps per FPGA. Moreover, we can re-
alize multiple instances of our decoder on the Nallatech Ben-
Nuey-4E PCI board that has slots for three daughters each ca-
pable of hosting two Virtex-II Pro FPGAs. This migration path
leads to a 96 Mbps SCPPM decoder that is fit for deep-space
optical communications. We can further increase the throughput
to hundreds of mega-bits and beyond by implementing a lower
order SCPPM decoder, such as 16-PPM, for terrestrial applica-
tions where a smaller PPM order actually achieves higher ca-
pacity due to the shorter distance between the transmitter and
receiver.

X. CONCLUSION

The SCPPM capacity approaching code is designed by
NASA to support deep-space optical communications at Mbps
and beyond. The nonbinary property of SCPPM makes direct
application of conventional turbo decoding very inefficient.
In this work, we introduced new techniques that optimize
the overall decoder throughput and performance: a simplified
Super Gamma to handle the unique inner accumulate PPM
code structure, a pipeline friendly “maxstar top-2” circuit that
reduces the max-only approximation penalty, a low-latency
CRC circuit that works with window-based decoders, and
a rapid access algorithmic interleaver that can compute the
permutation mappings on-the-fly.

To convey the efficacy of our techniques, we implemented
three variations of the SCPPM decoder on a Xilinx Virtex-II
8000 FPGA and summarized their tradeoffs. Through hard-
ware simulation we demonstrated that a single instance of our
SCPPM decoder can generate information bits at more than
6.72 Mbps and that the code design can perform within 1 dB
of capacity under nominal mission conditions. We believe that
our hardware optimizations are applicable to other nonbinary
modulation and code schemes that are characterized by a high
peak-to-average power ratio designed to fit the requirements of
long distance optical communications.
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